skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sintos, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given a set of points P and axis-aligned rectangles R in the plane, a point p ∈ P is called exposed if it lies outside all rectangles in R. In the max-exposure problem, given an integer parameter k, we want to delete k rectangles from R so as to maximize the number of exposed points. We show that the problem is NP-hard and assuming plausible complexity conjectures is also hard to approximate even when rectangles in R are translates of two fixed rectangles. However, if R only consists of translates of a single rectangle, we present a polynomial-time approximation scheme. For general rectangle range space, we present a simple O(k) bicriteria approximation algorithm; that is by deleting O(k2) rectangles, we can expose at least Ω(1/k) of the optimal number of points. 
    more » « less